-
Grundlæggende mængder og tallinjen
Vi har nu fået et kendskab til hvad en mængde er og hvorledes vi skriver dem op samt hvordan vi kan skabe nye mængder. En mængde kan også repræsenteres visuelt. Dette gøres ofte ved hjælp af cirkler. Hvis vi ser på to mængder som indeholder de første ti tal i to-tabellen og de første ti…
-
Mængdelærer
Vi skal her se lidt på begrebet mængdelærer for at få en basisforståelse for matematisk notation og mængder. Her er der to eksempler. Lad os sige, at vi har følgende to mængder \(M=\{2,4,6,8\}\)\(N=\{4,8,10,12\}\) LØSNING For at finde foreningsmængden skal vi finde den mængde vi for når vi forener de to mængder. Vi starter med at…
-
Beskyttet: Intervaller
Der er intet uddrag, da dette er et beskyttet indlæg.
-
Mængder
Opgave 3 Betragt mængderne \(\begin{align}A&=\{1,2,3,4\}\\ B&=\{3,5,7,9\}\\ C&=\{2,4,6,8\} \end{align}\) OPGAVE 4 Betragt mængderne \(\begin{align}A&=\{2,4,6,8,10,12\}\\ B&=\{4,8,12,16,20,24\}\\C&=\{1,2,3,4,5,6\}\end{align}\) OPGAVE 5 Tegn Venn-diagrammer der repræsentere mængder for underopgaverne 1, 2, 3, 4, 5, 6 i opgave 4. OPGAVE 6 Kan du ud fra opgave 4 og 5 sige noget om, hvilke regneregler du tror der gælder for regneoperationerne \(\cup\) og…