Category: HTX

  • NaHCO3 i treo

    NaHCO3 i treo

    Brusetabletter består af en fast syre og en fast base, der er presset sammen til en tablet. Når tabletten bliver våd, vil syren og basen reagere med hinanden. Basen er næsten altid natriumhydrogencarbonat. Ved reaktionen med syren dannes carbonsyre, men carbonsyre er ustabil og spalter hurtigt til carbondioxid og vand. Bruset er altså carbondioxid. Her…

  • Linjeelementer og linjefelt

    Når vi grafisk skal analysere en differentialligning kan vi indtegne et linjefelt i et koordinatsystem, som viser hvorledes løsningerne til differentialligningen vil forløbe. Man kan se det lidt som på et linjefelt som de små metalspåner man kan sprede på en overflade og som vil indrette sig i forhold til det magnetiske felt således at…

  • Tangent til en integralkurve

    Vi skal her så op hvorledes vi kan finde tangenten til en partikulær løsning til en differentialligning.

  • En simpel differentialligning af anden orden

    Vi har nu set på en simpel type af en første ordens differentialligning, nemlig af typen y’=g(x). Vi skal nu se på en differentialligning af anden orden, men vil her også se på den simpleste type, nemlig y’’=g(x). Herunder er der en række opgaver som omhandler differentialligninger af typen y’’=g(x).

  • Eftervisning af løsning til en differentialligning

    Vi skal her se på hvorledes vi kan eftervis at en funktion er en løsning til en differentialligning. Vi har tidligere set på hvorledes vi kan finde en løsning til differentialligninger på formen y’=g(x) og y’’=g(x). Men her får vi løsningen og skal vise at den er en løsning til en given differentialligning.

  • Introduktion til differentialligninger

    Vi ser lidt på hvad en differentialligning er og hvorledes vi finder en løsning.

  • Delvis integration

    Vi skal her se på delvis integration, som også kaldes for partiel integration, om er en metode vi kan benytte til at integrere integranter som består af produktet mellem to funktioner. Selve regnereglen er som følger \(\int f(x)\cdot g(x) dx = F(x)\cdot g(x) – \int F(x)\cdot g’(x) dx\) Vi vil starte med at se på…

  • Kædereglen

    Kædereglen defineres og der er opgaver i bunden.

  • Regneregler for grænseværdi

    Når vi skal finde grændeværdier har vi en række regneregler som vi kan bruge til at evaluerer grænseværdien. Der er beskrevet 7 regler med tilhørerende eksempler.

  • Faresymboler og signalord

    Vi skal her teste lidt af den viden I har fået omkring faresymboler og signalord. Herunder er der et vendespil hvor I skal matche faresymbol og signalord.