-
Tangent til en integralkurve
Vi skal her så op hvorledes vi kan finde tangenten til en partikulær løsning til en differentialligning.
-
En simpel differentialligning af anden orden
Vi har nu set på en simpel type af en første ordens differentialligning, nemlig af typen y’=g(x). Vi skal nu se på en differentialligning af anden orden, men vil her også se på den simpleste type, nemlig y’’=g(x). Herunder er der en række opgaver som omhandler differentialligninger af typen y’’=g(x).
-
Eftervisning af løsning til en differentialligning
Vi skal her se på hvorledes vi kan eftervis at en funktion er en løsning til en differentialligning. Vi har tidligere set på hvorledes vi kan finde en løsning til differentialligninger på formen y’=g(x) og y’’=g(x). Men her får vi løsningen og skal vise at den er en løsning til en given differentialligning.
-
Introduktion til differentialligninger
Vi ser lidt på hvad en differentialligning er og hvorledes vi finder en løsning.
-
Delvis integration
Vi skal her se på delvis integration, som også kaldes for partiel integration, om er en metode vi kan benytte til at integrere integranter som består af produktet mellem to funktioner. Selve regnereglen er som følger \(\int f(x)\cdot g(x) dx = F(x)\cdot g(x) – \int F(x)\cdot g’(x) dx\) Vi vil starte med at se på…
-
Beskyttet: Intervaller
Der er intet uddrag, da dette er et beskyttet indlæg.
-
Mængder
Opgave 3 Betragt mængderne \(\begin{align}A&=\{1,2,3,4\}\\ B&=\{3,5,7,9\}\\ C&=\{2,4,6,8\} \end{align}\) OPGAVE 4 Betragt mængderne \(\begin{align}A&=\{2,4,6,8,10,12\}\\ B&=\{4,8,12,16,20,24\}\\C&=\{1,2,3,4,5,6\}\end{align}\) OPGAVE 5 Tegn Venn-diagrammer der repræsentere mængder for underopgaverne 1, 2, 3, 4, 5, 6 i opgave 4. OPGAVE 6 Kan du ud fra opgave 4 og 5 sige noget om, hvilke regneregler du tror der gælder for regneoperationerne \(\cup\) og…
-
Integration ved substitution
Vi ser her lidt på integration ved substitution. Integration ved substitution er lidt lige som kædereglen i differentialregningen, vi kan bruge den til at integrere sammensatte funktioner. Men hvor kædereglen i differentialregningen at differentierer alle funktioner, kan integration ved substitution kun bruges i visse tilfælde. Vi kommer til at se lidt på i hvilke tilfælde…
-
Kædereglen
Kædereglen defineres og der er opgaver i bunden.
-
Regneregler for grænseværdi
Når vi skal finde grændeværdier har vi en række regneregler som vi kan bruge til at evaluerer grænseværdien. Der er beskrevet 7 regler med tilhørerende eksempler.
-
Areal under kurven
Vi er nu blevet relativ gode til at finde arealet under kurven og vil nu bruge vores viden til at finde arealet under en kurve, det vil sige, bestemme det bestemte integrale.
-
Stamfunktion gennem et punkt
Vi skal her se på hvorledes vi finder stamfunktionen gennem et punkt. Grøn Gul Rød Opgave 10.12 Opgave 2016 Opgave 2017 Opgave 2015 Opgave 2018 Opgave 2019 Øvelse 211 Øvelse 216 Opgave 2020 Øvelse 212 Øvelse 217 Opgave 2021 Øvelse 213 Øvelse 218 Øvelse 220 Øvelse 214 Øvelse 219 Øvelse 215